Physical, Chemical and Mechanical Properties of Tungsten

Physical Properties of Tungsten

Tungsten possesses numerous physical properties that are unique among metals. For example, the melting point of tungsten can reach up to 3410°C—the highest among all metals—and it has the lowest vapor pressure and evaporation rate among all metals. Moreover, the degree of variation of the thermal expansion coefficient of tungsten is least susceptible to changes in the ambient temperature among all refractory metals. Hence, tungsten has been used in extensive and significant applications owing to its prominent properties.

Tungsten Physical Properties

Atomic Number74Evaporation Rate/[kg/(m2.s)]
Atomic Wreight183.852600K4.28x10-8
Density/(g/cm3 )19.302800K8.28x10-7
Atomic Radius nm0.13683100K1.06x10-5
Ionic Radius nm0.068 (W4+ )
0.068(W6+ )
3000K9.85x10-5
Melting Point/ )C3410+/-203273K2.06x10-4
Melting Heat/(kJ/g)255Liquid Vapor Pressure/Pa
Sublimating/(kJ/g)4.3964263K133.32
Specific Heat/[J/(kg.K)]4780K1333.22
293K1.34x1025159K5332.88
773K1.42x1026200K101324.72
1273K1.51x102Solid Vapor Pressure/Pa
2273K1.72X1022273K1.59x10-7
Boiling Point/ )C5900~60002503K8.81x10-6
Heat of vaporization(Below boiling point)/(kJ/g)4.9573003K9.44x10-3
Thermal Conductivity/[W/(m.K)]1273K
293K1.67x1022273K
1100K1.17x102Electrical Resistivity/μΩ. cm
2000K1.0x102-196oC0.61
Thermal Expansion/oC-120oC5.5
300K4.4x10-61000oC34
773K4.6x10-62000oC66
Thermal Expansion Changes Tungsten Molybdenum TZM
Thermal Expansion Comparison

Chemical Properties of Tungsten

Tungsten enjoys high chemical stability; it can resist the corrosion caused by nearly all acid and alkaline liquids at room temperature and several molten metals at high temperatures. Tungsten is, therefore, a favorable choice for smelting molds or containers for molten metals.

Mechanical Properties of Tungsten

The tensile properties of tungsten depend on its preparation method. In particular, tungsten prepared by electron beam smelting exhibits the lowest strength and highest ductility. In contrast, tungsten prepared by vapor deposition exhibits barely higher strength than that prepared by electron beam melting. Moreover, tungsten prepared by powder metallurgy and arc melting presents the highest strength with poor ductility. Powder metallurgy is an industrialized method applied in the production of tungsten materials. Other methods are adopted only for specific needs (such as ultra-high purity tungsten). Hardness measurement is a fast and economical means of roughly measuring the strength of a material. The strength of tungsten is strongly anisotropic.

Tungsten Tensile Strength Elongation
Tungsten Tensile Strength Elongation

Regarding the elastic modulus of tungsten, energy is converted to elastic deformation energy when the energy consumed by elastic deformation is stored in the material completely. In addition, the material recovers its original properties with the release of the elastic deformation energy after removing the external force. In that case, the effect of tungsten’s elasticity on the deformation treatment must be considered in the deformation process.

As tungsten is a body-centered cubic crystal, its brittleness has an inherent characteristic. More specifically, the ratio of volumetric elastic modulus k to shear elastic modulus µ is considered to represent intrinsic brittleness in the active slip system. The higher the percentage, the lower the DBTT (Ductile-Brittle Transition Temperature), and vice versa. The k/µ values of tungsten and molybdenum materials range from 1.22 to 2.02, indicating that both materials’ high DBTT can be found.